Characterization of mRNA-Cytoskeleton Interactions In Situ Using FMTRIP and Proximity Ligation
نویسندگان
چکیده
Many studies have demonstrated an association between the cytoskeleton and mRNA, as well as the asymmetric distribution of mRNA granules within the cell in response to various signaling events. It is likely that the extensive cytoskeletal network directs mRNA transport and localization, with different cytoskeletal elements having their own specific roles. In order to understand the spatiotemporal changes in the interactions between the mRNA and the cytoskeleton as a response to a stimulus, a technique that can visualize and quantify these changes across a population of cells while capturing cell-to-cell variations is required. Here, we demonstrate a method for imaging and quantifying mRNA-cytoskeleton interactions on a per cell basis with single-interaction sensitivity. Using a proximity ligation assay with flag-tagged multiply-labeled tetravalent RNA imaging probes (FMTRIP), we quantified interactions between mRNAs and β-tubulin, vimentin, or filamentous actin (F-actin) for two different mRNAs, poly(A) + and β-actin mRNA, in two different cell types, A549 cells and human dermal fibroblasts (HDF). We found that the mRNAs interacted predominantly with F-actin (>50% in HDF, >20% in A549 cells), compared to β-tubulin (<5%) and vimentin (11-13%). This likely reflects differences in mRNA management by the two cell types. We then quantified changes in these interactions in response to two perturbations, F-actin depolymerization and arsenite-induced oxidative stress, both of which alter either the cytoskeleton itself and mRNA localization. Both perturbations led to a decrease in poly(A) + mRNA interactions with F-actin and an increase in the interactions with microtubules, in a time dependent manner.
منابع مشابه
Quantifying RNA–protein interactions in situ using modified-MTRIPs and proximity ligation
The stabilization, translation and degradation of RNA are regulated by interactions between trans-acting factors, such as microRNA and RNA-binding proteins (RBP). In order to investigate the relationships between these events and their significance, a method that detects the localization of these interactions within a single cell, as well as their variability across a cell population, is needed...
متن کاملSyntheses, Characterization and Solvatochromism Study of Heteroleptic Chelated Copper(II) Complexes Containing N,N- dibezyl Substituted Ethylenediamine and Acetylacetonate Ligands
A series of new heteroleptic chelated copper(II) complexes that encompass N,N-dibezyl substituted derivative of ethylenediamine (X-diamine) and acetylacetonate (acac) were prepared. The IR and electronic absorption spectra and the molar conductivity of the complexes are presented and discussed. The molar conductivity values of the complexes in different solvents reveals a predominance of elec...
متن کاملDetecting individual extracellular vesicles using a multicolor in situ proximity ligation assay with flow cytometric readout
Flow cytometry is a powerful method for quantitative and qualitative analysis of individual cells. However, flow cytometric analysis of extracellular vesicles (EVs), and the proteins present on their surfaces has been hampered by the small size of the EVs - in particular for the smallest EVs, which can be as little as 40 nm in diameter, the limited number of antigens present, and their low refr...
متن کاملSimultaneous Visualization of Both Signaling Cascade Activity and End-Point Gene Expression in Single Cells
We have developed an approach for simultaneous detection of individual endogenous protein modifications and mRNA molecules in single cells in situ. For this purpose we combined two methods previously developed in our lab: in situ proximity ligation assay for the detection of individual protein interactions and -modifications and in situ detection of single mRNA molecules using padlock probes. A...
متن کاملRNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells
Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-char...
متن کامل